Biblio

Export 140 results:
Author Title [ Type(Desc)] Year
Filters: First Letter Of Last Name is L  [Clear All Filters]
Journal Article
García M.A.Solera, Timmis R.J., van Dijk N., Whyatt J.D., Leith I.D., Leeson S.R., Braban C.F., Sheppard L.J., Sutton M.A., Tang Y.S..  2017.  Directional passive ambient air monitoring of ammonia for fugitive source attribution; a field trial with wind tunnel characteristics.. Atmospheric Environment. 167:576-585.
García M.A.Solera, Timmis R.J., van Dijk N., Whyatt J.D., Leith I.D., Leeson S.R., Braban C.F., Sheppard L.J., Sutton M.A., Tang Y.S..  2017.  Directional passive ambient air monitoring of ammonia for fugitive source attribution; a field trial with wind tunnel characteristics.. Atmospheric Environment. 167:576-585.
Evans CD, Goodale CL, Caporn SJM, Dise NB, Emmett BA, Fernandez IJ, Field CD, Findlay SEG, Lovett GM, Meesenburg H et al..  2008.  Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments Biogeochemistry. 91(1):13-35.
Sheppard L.J, Leith I.D, Mizunuma T., Cape J.N., Crossley A., Leeson S., Sutton M.A., Fowler D., van Dijk N..  2011.  Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation. Global Change Biology. 17(12):3589-3607.
Sheppard L.J, Leith I.D, Mizunuma T., Cape J.N., Crossley A., Leeson S., Sutton M.A., Fowler D., van Dijk N..  2011.  Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation. Global Change Biology. 17(12):3589-3607.
Carfrae J.A, Sheppard L.J, Raven J.A, Leith I.D, Stein W., Crossley A., Theobald M..  2005.  Early effects of atmospheric ammonia deposition on Calluna vulgaris (L.) hull growing on an ombrotrophic peat bog. Water, Air and Soil Pollution: Focus. 4(6):229-239.
Carfrae J.A., Sheppard L.J., Raven J.A., Stein W., Leith I.D., Theobald M., Crossley A..  2004.  Early effects of atmospheric ammonia (NH3) deposition on Calluna vulgaris (L.) growing on an ombrotrophic peat bog.. Water Air and Soil Pollution. 4:229-239.
van den Elzen E, van den Berg LJL, van der Weijden B, Fritz C, Sheppard LJ, Lamers LPM.  2018.  Effects of airborne ammonium and nitrate pollution strongly differ in peat bogs, but symbiotic nitrogen fixation remains unaffected. Science of the Total Environment. 610–611:732–740.
Sheppard L.J., Leith I.D..  2002.  Effects of NH3 Fumigation on the Frost Hardiness of Calluna- Does N Deposition Increase Winter Damage by Frost? Phyton. 42:183-190.
Cape J.N., Jones M.R., Leith I.D., Sheppard L.J., van Dijk N., Sutton M.A., Fowler D..  2008.  Estimate of annual NH3 dry deposition to a fumigated ombrotrophic bog using concentration-dependent deposition velocities.. Atmospheric Environment. 42(27):6637-6646.
Cape J.N, van der Eerden L.J, Sheppard L.J, Leith I.D, Sutton M.A.  2009.  Evidence for changing the critical level for ammonia. Environmental Pollution. 157(3):1033-1037.
Sheppard L.J, Leith I.D, Leeson S.R, van Dijk N., Field C., Levy P..  2013.  Fate of N in a peatland, Whim bog: immobilisation in the vegetation and peat, leakage into pore water and losses as N2O depend on the form of N. Biogeosciences. 10(1):149-160.
Sheppard L.J, Leith I.D, Leeson S.R, van Dijk N., Field C., Levy P..  2013.  Fate of N in a peatland, Whim bog: immobilisation in the vegetation and peat, leakage into pore water and losses as N2O depend on the form of N. Biogeosciences. 10(1):149-160.
Sheppard L.J, Leith I.D, Leeson S.R, van Dijk N., Field C., Levy P..  2013.  Fate of N in a peatland, Whim bog: immobilisation in the vegetation and peat, leakage into pore water and losses as N2O depend on the form of N. Biogeosciences. 10(1):149-160.
Currey P.M., Johnson D., Dawson L.A., van der Wal R., Thornton B., Sheppard L.J., Leith I.D., Artz R.R.E..  2011.  Five years of simulated atmospheric nitrogen deposition have only subtle effects on the fate of newly synthesized carbon in Calluna vulgaris and Eriophorum vaginatum.. Soil Biology & Biochemistry. 43(3):495-502.
Kiheri H, Velmala S, Pennanen T, Timonen S, Sietiö O-M, Fritze H, Heinonsalo J, van Dijk N, Dise N, Larmola T.  2020.  Fungal Colonization Patterns and Enzymatic Activities of Peatland Ericaceous Plants Following Long-Term Nutrient Addition. Soil Biology and Biochemistry. 147(107833)
Limpens J., Granath G., Aerts R., Heijmans M.MPD, Sheppard L.J, Bragazza L., Williams B.L, Rydin H., Bubier J., Moore T. et al..  2012.  Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytologist. 195(2):404-418.
Limpens J., Granath G., Aerts R., Heijmans M.MPD, Sheppard L.J, Bragazza L., Williams B.L, Rydin H., Bubier J., Moore T. et al..  2012.  Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytologist. 195(2):404-418.
Skinner R.A, Ineson P., Jones H., Sleep D., Leith I.D, Sheppard L.J.  2006.  Heathland vegetation as a bio-monitor for nitrogen deposition and source attribution using delta N-15 values. Atmospheric Environment. 40(3):498-507.
Phoenix G.K., Emmett B.A., Britton A.J., Caporn S.J.M., Dise N.B., Helliwell R., Jones L., Leake J.R., Leith I.D., Sheppard L.J. et al..  2012.  Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology. 18(4):1197-1215.
Phoenix G.K., Emmett B.A., Britton A.J., Caporn S.J.M., Dise N.B., Helliwell R., Jones L., Leake J.R., Leith I.D., Sheppard L.J. et al..  2012.  Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology. 18(4):1197-1215.
Sheppard L.J., Leith I.D., Mizunuma T., Leeson S., Kivimaki S., Cape J.N, van Dijk N., Leaver D., Sutton M.A., Fowler D. et al..  2014.  Inertia in an ombrotrophic bog ecosystem in response to 9 years' realistic perturbation by wet deposition of nitrogen, separated by form. Global Change Biology. 20(2):566-580.
Sheppard L.J., Leith I.D., Mizunuma T., Leeson S., Kivimaki S., Cape J.N, van Dijk N., Leaver D., Sutton M.A., Fowler D. et al..  2014.  Inertia in an ombrotrophic bog ecosystem in response to 9 years' realistic perturbation by wet deposition of nitrogen, separated by form. Global Change Biology. 20(2):566-580.
Sheppard L.J., Leith I.D., Mizunuma T., Leeson S., Kivimaki S., Cape J.N, van Dijk N., Leaver D., Sutton M.A., Fowler D. et al..  2014.  Inertia in an ombrotrophic bog ecosystem in response to 9 years' realistic perturbation by wet deposition of nitrogen, separated by form. Global Change Biology. 20(2):566-580.
Kivimaeki SK, Sheppard LJ, Leith ID, Grace J.  2013.  Long-term enhanced nitrogen deposition increases ecosystem respiration and carbon loss from a Sphagnum bog in the Scottish Borders. Environmental and Experimental Botany. 90:53-61.

Pages